Edmund Optics®

Knowledge Center

 Verified library of trusted technical resources created by our 240+ global engineers.

Filter
Search Results for: IR Mirrors (163)

Schwarz Mirrors

Schwarz Mirrors eliminate stray light using black, engineered fused silica substrates that maintain desired characteristics while absorbing unwanted light.

View Now Add to saved content

The Correct Material for Infrared (IR) Applications

Using an Infrared Application? Discover the importance of choosing the right material and comparisons of each at Edmund Optics.

View Now Add to saved content

Stemmed Mirrors

Mounting flat mirrors by their edges in a kinematic mount imparts stress onto the mirror surface. This results in distortion and reduced quality of the reflected wavefront, which is especially noticeable when using high-quality mirrors. Stemmed mirrors, on the other hand, are mounted from a smaller diameter “stem” protruding from the back of the mirror, resulting in significantly reduced stress on the mirror surface, high stability, and cost reduction and can be used as a replacement for a more expensive and complex kinematic mount and a conventional mirror.

View Now Add to saved content

UV vs. IR Grade Fused Silica

UV grade fused silica is ideal for UV and visible applications, but IR grade fused silica has better transmission in the IR due to a lack of OH- impurities.

View Now Add to saved content

Optical Mirrors Review

Mirrors are commonly used to fold or compact an optical system.

View Now Add to saved content

Ultrafast Highly-Dispersive Mirrors

Pulse Compression and Dispersion Compensation for Ultrafast Lasers

View Now Add to saved content

How do I clean my mirrors?

View Now Add to saved content

High Reflectivity Mirrors for Laser Applications

The industry standard method for quantifying reflectivity does not tell the whole story

View Now Add to saved content

Infrared (IR) Spectrum

View Now Add to saved content

How do you measure the reflectivity of mirrors with a reflectivity less than 99.5%?

View Now Add to saved content

Highly-Dispersive Ultrafast Mirrors for Dispersion Compensation

Learn how Highly-Dispersive Mirrors compensate for dispersion and compress pulse duration in ultrafast laser systems, which is critical for maximizing performance.

View Now Add to saved content

How are your Off-Axis Parabolic Metal Mirrors manufactured?

View Now Add to saved content

Why do ultrafast highly-dispersive mirrors have such low angles of incidence (AOIs)?

View Now Add to saved content

Schwarz Mirrors – TRENDING IN OPTICS: EPISODE 4

Schwarz Mirrors minimize unwanted stray light using an opaque, engineered fused silica substrate that absorbs light that would otherwise be transmitted.

View Now Add to saved content

You offer many substrates for UV and IR applications. How do I know which is best for me?

View Now Add to saved content

When should I use an IR cut filter and when should I use heat absorbing glass?

View Now Add to saved content

I recently removed the IR cut filter from my camera and did not replace it with any type of clear glass. It has since lost sensitivity in the IR, which was the goal, but also focus ability in the optics. Can you explain why this is so?

View Now Add to saved content

If CRDS is more accurate, why isn’t CRDS always used to measure the reflectivity of mirrors?

View Now Add to saved content

I would like to use your Off-Axis Mirror in a laser application with high temperatures. What is the maximum damage threshold and temperature limit these mirrors can withstand?

View Now Add to saved content

High Reflectivity Mirrors for Laser Applications

Edmund Optics' panel of laser optics experts discuss why the industry standard of measuring transmission to infer the reflectivity of high reflectivity laser mirrors doesn’t tell the whole story.

View Now Add to saved content

Optotune Beam Steering Mirrors Demonstration Video

Optotune Beam Steering Mirrors Demonstration Video

View Now Add to saved content

I need an IR laser whose fall time is as small as possible so it comes as close as possible to an instantaneous stop. What would you recommend?

View Now Add to saved content

What is the difference between ¼ wave, 1/10 wave, and 1/20 wave mirrors?

View Now Add to saved content

Highly-Dispersive Mirrors

Ultrafast highly-dispersive mirrors are critical for pulse compression and dispersion compensation in ultrafast laser applications, improving system performance.

View Now Add to saved content

Roughness of Diamond Turned Off-Axis Parabolic Mirrors

Learn about spatial frequency errors and surface roughness of Single Point Diamond Turned off-axis parabolic mirrors at Edmund Optics.

View Now Add to saved content

TECHSPEC® Nd:YAG Laser Line Mirrors

View Now Add to saved content

Introduction to Adaptive Optics and Deformable Mirrors

Have a question about adaptive optics or deformable mirrors? Learn more on understanding wavefronts, adaptive optics theory, and more at Edmund Optics.

View Now Add to saved content

Handling and Storing High Power Laser Mirrors

Check out these best practices for handling and storing high power laser mirrors to decrease the risk of damage and increase lifetimes at Edmund Optics.

View Now Add to saved content

The IR Market’s Shifting Landscape

View Now Add to saved content

Semiconductor Supermirrors

Semiconductor supermirrors offer high reflectivity and outperform many IR mirrors on the market. Learn more about these new supermirrors at Edmund Optics.

View Now Add to saved content